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ABSTRACT
Nowadays, the popular Android is so closely involved in
people’s daily lives that people rely on Android to per-
form critical operations and trust Android with sensitive
information. It is of great importance to guarantee the
usability and security of Android which, however, is such
a huge system that a potential threat may arise from any
part of it. In this paper, we focus on the Free Floating
window (FF window) which is a category of windows that
can appear freely above any other applications. It can
share the screen space with other FF windows, dialogs, and
activities. An FF window is flexible in both its appearance
and behaviour features. We analyse the behaviour features
of FF windows, including the priority in display layer and
the capability of processing user-generated events. Three
types of attacks via FF windows with delicate design in
their appearance and behaviour features are demonstrated,
i.e., DoS attack against Android system, GUI hijacking by
targeting overlap, and input inference using FF windows
as a side channel. To address the threat caused by FF
windows, we design a priority framework for FF windows,
which protects a sensitive activity/FF window declared
by developers from being attacked by any malicious FF
windows. A complementary solution is proposed to mitigate
the confusion attack from malicious activities. Finally, we
provide Android with suggestions on how to manage FF
windows.

Keywords
Android, free floating window, DoS attack, GUI hijacking,
input inference.

1. INTRODUCTION
Nowadays, smartphones are closely involved in users’ daily

lives. Users rely on smartphones and the applications on
smartphones to process their personal issues, e.g., man-
aging financial accounts. The more users rely on mobile
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smartphones, the more malwares emphasize on these mobile
systems [1]. Thus, the reliability and usability of smart
systems are of great importance to users. Among various
mobile systems, Android dominates the market with an
82.8% share in 2015 Q2 [2].

Android is an operating system that even more than
one application can run concurrently in background, each
time there is only one application interacting with users.
However, there is no explicit information showing to users
about the active user interface and the application it belongs
to. Therefore, it can be told which application is interacting
with users only according to the application’s appearance
visible on screen. Users normally cannot distinguish two
applications with similar user interfaces [3, 4].

The di�culty in di↵erentiating applications leads to two
types of attacks. One is touchjacking [5, 6] which is derived
from the clickjacking on desktops. Touchjacking blinds users
from seeing the application they are interacting with. It
seduces users to click the designated position by showing
interesting clickable items on screen, i.e., bait, whereas the
activity that users are indeed dealing with is the activity
covered by the bait, e.g., an activity downloading malware
or costing money. Another type of attack is GUI confusion
attack [3]. GUI confusion also prevents users from realizing
which application they are interacting with. The di↵erence
is that it draws user interface elements over the target
activity or switches to another similar activity without the
user’s knowing. The application interacting with a user is
the one on top of victim activity, which is achieved by adding
a deceptive window or starting a malicious activity.

We notice that there is a category of windows which
can appear above any other applications. They can share
screen space with other windows, dialogs, and activities.
We call them Free Floating windows (FF windows). The
existence of an FF window depends on the existence of the
process it belongs to. This is di↵erent from an activity
with windowIsFloating flag, whose existence depends on
the existence of its parent window. “Free” not only means
that the FF window can float above any application no
matter the covered window is from the same or di↵erent
application, but also indicates the flexibility in defining its
appearance and behaviour features. An FF window has
a set of attributes that decide the way it acts, such as
whether it accepts or declines the events generated by a user.
The well-known alert window which requires permission
SYSTEM_ALERT_WINDOW is a type of FF window. There are a
lot of other floating windows with di↵erent features which
are obscure to the public.



We investigate into FF windows in this paper, especially
emphasize their inconspicuous behaviour features. Based
on the comprehensive understanding of FF windows, we
analyse their potential threats to Android system and to
other Android applications running on the same platform.
We show that attacks using FF windows can obtain users’
system unlock credentials, hijack the security alerts, get
the implication about user input, and even perform DoS
attack against Android system. Finally, the corresponding
solution is discussed. In summary, we make the following
contributions.

• To the best of our knowledge, we are the first to
systematically analyse the attributes of Free Floating
windows (FF windows) and behaviour features due to
such attributes, including types and flags.

• Three types of attacks are presented based on the
behaviour features we analyse, i.e., DoS attack against
Android systems, GUI hijacking by targeting overlap,
and input inference using FF windows as a side
channel. The applications carrying out the above
attacks can pass the audit of Google bouncer[7] and
are published to the Google Play [8, 9].

1. The DoS attack can disable any Android device
from version 2.3 to the latest 6.0 without any
permission, which we have updated to Android
and received the confirmation.

2. The GUI hijacking can mislead a user using FF
windows with delicate design in appearance and
behaviour features, e.g., blocking the security
alert and obtaining the unlock pattern of Android
system or a third-party application.

3. FF windows can be used to provide side channel
information to the inference of user input. The
experiments demonstrate that it significantly in-
creases the possibility of the password-guessing
attack.

• We propose and implement 1) a priority framework
for FF windows to defend the above attacks from
FF windows, and 2) a complementary solution to
confusion attack based on activities. We also discuss
how to restrict the capability of FF windows and
manage the use of FF windows.

The remaining of this paper is organized as follows.
Section 2 introduces the free floating window and analyses
its behaviour features. Section 3 demonstrates three types
of attacks via FF windows, including DoS attack via FF
windows, GUI hijacking by targeting overlap, and using FF
windows as a side channel. Later in Section 4, we discuss
the causes of the attacks and propose a defence framework
to mitigate the threats from FF windows. Some suggestions
are also provided in this section. Section 5 summaries the
related work. Finally, we conclude our paper in Section 6.

2. FREE FLOATING WINDOWS
Before we present an in-depth look at FF windows,

we first introduce the concept of “window.” Activity,
which is known as one of the most important components
on Android, draws its user interface in a window given

Figure 1: The priority of FF windows with di↵erent
WindowManager.LayoutParams.type values. The more front
the layer is, the closer it is to the device user.

by Android. Each window has a single view hierarchy
containing Views [12] which are interactive UI elements.
Di↵erent from activities, windows are managed dependently
by WindowManager. Multiple windows can share space in
one screen, e.g., the status bar, the navigation bar, and the
Home screen.

An FF window is a developer-defined window. Its
appearance and event processing capability can be defined
by developers. FF windows with di↵erent attributes present
di↵erent behaviours during their display, e.g., some of them
can process user events while some cannot.

There are two approaches to launch an FF window. One
is to define an FF window using WindowManager, and launch
it by calling WindowManager.addView(). The other way
is to create an FF window by AlertDialog, and show it
on screen by AlertDialog.show(). The behaviour feature
of an FF window is set by WindowManager.LayoutParams
no matter whether the FF window is launched through
WindowManager or AlertDialog. Among all the attributes
in WindowManager.LayoutParams, the most influential at-
tributes are WindowManager.LayoutParams.type, which reg-
ulates the priority in display layer on screen, and Window-
Manager.LayoutParams.flags, which defines the capability
of event processing.
WindowManager.LayoutParams.type has a set of values

which define the priority that an FF window enjoys when
being placed along the Z-axis (perpendicular to the device
screen towards the device user). We investigate into those
values, and summarize the priority of some important
types. The more prior it is, the closer it is to users.
Figure 1 shows the priority of FF windows with di↵erent
WindowManager.LayoutParams.type values on Android 5.0.
For an FF window of certain type, it can overlap an FF
window of any type behind it, e.g., an FF window with



WindowManager.LayoutParams.type Focusable? Required Permission
TYPE PHONE Yes SYSTEM ALERT WINDOW
TYPE TOAST Yes -
TYPE PRIORITY PHONE No SYSTEM ALERT WINDOW
TYPE SYSTEM ALERT Yes SYSTEM ALERT WINDOW
TYPE SYSTEM OVERLAY No SYSTEM ALERT WINDOW
TYPE SYSTEM ERROR Yes SYSTEM ALERT WINDOW

Table 1: The WindowManager.LayoutParams.type values which can be used by a third-party application. Types are listed
ascendingly in priority order.

Markets Google Play Wandoujia [10] Anzhi [11]
# of applications 21,491 17,046 25,731
# of applications requiring permission
SYSTEM ALERT WINDOW

1,001 6,716 8,622

Ratio 4.66% 39.40% 33.51%
Collection period 2015.05.06-2015.05.08 2015.09.19-2015.10.15 2015.09.22-2015.10.15

Table 2: The usage of SYSTEM_ALERT_WINDOW permission in samples from three popular Android markets.

TYPE_SYSTEM_ERROR can appear above all the other types
in Figure 1. For FF windows of the same type, the latter
created one is on top of the former created one along the Z-
axis. It is worth noting that not all of these types in Figure 1
can be used by third-party applications, and there are
other types with priority higher than TYPE_SYSTEM_ERROR
are specially for system use. Table 1 lists the types
that can be used by a third-party application in the
ascending order of priority in appearance along Z-axis. The
type with highest priority that a third-party application
can use is TYPE_SYSTEM_ERROR. Except for TYPE_TOAST
requiring no permission, the other types require the calling
application to have SYSTEM_ALERT_WINDOW permission which
is a common permission requested by averagely around 25%
of the random samples from the Google Play and two biggest
application markets in China (Table 2).
WindowManager.LayoutParams.flags is another most in-

fluential attribute of FF windows, which defines whether
an FF window can get the system focus or process the
events. Some WindowManager.LayoutParams.flags values
related to the capability of processing user-generated events
are shown in Table 3. Flags can be set individually
or jointly. If no flag is set, an FF window acts like
an activity. It consumes all the events generated within
its window range. The covered activity cannot respond
to the click events, even it is partially visible outside
the FF window. Di↵erently, some FF windows do not
respond to the click events inside the window range, e.g.,
an FF window with FLAG_NOT_TOUCHABLE passes all the
events to whatever touchable windows behind it. More-
over, complicated behaviour features can be defined by
assistant flags which can be set jointly with the ma-
jor flags and do not change the behaviour defined by
a major flag, e.g., FLAG_WATCH_OUTSIDE_TOUCH. An FF
window with FLAG_WATCH_OUTSIDE_TOUCH is able to process
an ACTION_OUTSIDE event enveloping an ACTION_DOWN event
generated outside the window concurrently with the touched
window. When there is an ACTION_DOWN event generated
outside the window with FLAG_WATCH_OUTSIDE_TOUCH, An-
droid system first passes the event to the touched window,
then re-envelops the event excluding the click position into

an ACTION_OUTSIDE event and sends it to the above FF
window with FLAG_WATCH_OUTSIDE_TOUCH.

We can see that the flexibility in the attribute set-
ting of WindowManager.LayoutParams.type and Window-
Manager.LayoutParams.flags enriches the diversity of FF
windows’ behaviours, which however, also gives attackers
opportunity to carry out various attacks taking advantage
of FF windows.

3. ATTACK ANALYSIS
Based on the behaviour features we analyse, we identify

three practical attacks based on FF windows, i.e., DoS
attack via FF windows, GUI hijacking by targeting overlap,
and using FF windows as a side channel. These attacks
can be launched by a single application installed on the
target device without root privilege. From the perspective of
attackers, we demonstrate the design of these attacks along
with their potential threats to Android system, Android
applications, and Android users.

3.1 DoS Attack via FF Windows
DoS is to disable a target object to its intended users by

occupying a critical mutually-exclusive resource or flooding
too many requests which are out of the target’s capability.
DoS is fundamentally to monopolize or exhaust the indis-
pensable resources, without which, the target object can
no longer provide intended services. It is an e�cient way
to protect system resources by restricting the number of
resources that an object can request, e.g., Android limits
the number of Toasts [13] that an application can invoke
within a short period to 50. Unfortunately, we discover that
there is no limitation in the usage of FF windows.

We manage to flood Android by invoking a number of
FF windows. To test the DoS attack, we develop an
application called “Popper” which does nothing but pop
up a large number FF windows (e.g., 1,200 FF windows)
with type TYPE_TOAST in a short time. Popper is tested
against the available Android versions from 2.3 to latest
6.0, which cover 99.8% of current Android devices according
to the o�cial distribution statistics [14]. In most cases,
Popper causes reboot of Android system soon after its



WindowManager.LayoutParams.flags
The window responding
to click events within
the FF window area

The window responding
to click events outside
the FF window area

Does the FF window pass
down the key events
from Back button?

FLAG NOT FOCUSABLE* The FF window The covered window Yes
FLAG NOT TOUCHABLE The covered window The covered window No
FLAG NOT TOUCH MODAL The FF window The covered window No
FLAG NOT FOCUSABLE|
FLAG NOT TOUCHABLE

The covered window The covered window Yes

FLAG NOT TOUCHABLE|
FLAG NOT TOUCH MODAL

The covered window The covered window No

Not with any flag above The FF window The FF window No

Table 3: The behaviour features of FF windows with di↵erent WindowManager.LayoutParams.flags values when they appear
on top of another window. In the table, “the covered window” is covered by “the FF window” with corresponding flags. *If
FLAG_NOT_FOCUSABLE is set, FLAG_NOT_TOUCH_MODAL is set implicitly.

running. However, sometimes Android kills Popper before
Popper pops up enough FF windows to exhaust system
resources. This phenomenon is observed on Android 5.0
and 5.1. We speculate that Android 5.0 and 5.1 can detect
the unusual system slowdown, thus the system ends Popper
before Popper causes damage. We envelop Popper in a
game application1 and publish it to Google Play [8]. Google
Bouncer does not block us from uploading.

In Popper, we use FF windows of TYPE_TOAST to avoid
requesting for any permissions. Except for FF windows, we
have verified that other windows added by WindowManager,
including Dialog and PopupWindow can also cause the reboot
of the Android system in the similar way.

The consequences caused by such DoS attack might
be serious, since Android OS is widely used in various
critical scenarios [15], e.g., Android-auto navigation[16],
aircraft navigation [17] and patient monitoring [18]. The
sudden failure of Android may result in serious damage.
Moreover, the reboot can be launched at any time. A
malicious application could frame an innocent application
by launching DoS attack every time the innocent application
starts. Or, a malicious application could listen to the
BOOT_COMPLETED broadcast and keep launching the attacks
once the victim Android finishes its reboot to immerse the
victim Android system in the loop of reboot.

We have reported to Android the above vulnerability
along with our analysis, which has been confirmed imme-
diately2. This vulnerability is due to the chain reaction
of the unavailability of file descriptors. During adding an
FF window to current display, a socketpair is created to
carry out the communication between InputManager and
the calling application. Each socket needs a file descriptor.
When Popper creates a large number of FF windows in such
a short time, there is no more file descriptor to dispatch,
which leads to the failure in creating socketpair. And thus,
there is no connection establishing between InputManager
and the calling application. The problem comes with that
WindowManager fails in dealing with such exception. It

1In order to protect a normal user from being attacked,
the DoS attack in published game is intentionally designed
to be triggered only under certain operations. To trigger
the DoS attack, one needs to sequentially and continuously
input number 20, 4, and 7 to Level 5, 1, and 8 in the game,
respectively. That is to open Level 5, input number 20, and
go back to the main menu. Similarly for Level 1 and 8.
2CVE-2015-6648 is assigned to this vulnerability.

results in the the crash of ActivityManager, which fur-
ther kills the system_server process. The system_server
process is such an important system process that if it is
killed, Zygote, which is created at a very early stage during
Android boot and can be seen as the parent process of all
applications, is exited. In this case, Android has to reboot
to recover all the damage.

3.2 GUI Hijacking by Targeting Overlap
The previous GUI confusion attacks mainly switch ac-

tivities to take over the control flow [6] or create an
inescapable fullscreen window that traps users within the
attack applications [3]. Di↵erent from the previous focuses,
we concentrate on 1) the capability of FF windows in display
priority and event processing, and 2) the delicate design
in combining of di↵erent FF windows to launch targeted
attacks. We demonstrate that subtle GUI hijacking is very
powerful in intercepting the communication between users
and applications, e.g., retrieving the data passing from
users to applications (Section 3.2.2), and tampering with
the information from applications to users (Section 3.2.3).
Compared to the previous confusion attacks, GUI hijacking
using FF windows is stealthier since there is no animation
of switching activities, and moreover the attack application
does not appear in the recent task list.

3.2.1 General attack process
Normally, one subtle GUI hijacking attack is only cus-

tomized for one target application due to the variety in
functionality and design of the target application. Figure 2
illustrates the process of attacking one particular applica-
tion. The main e↵ort is during o✏ine phase. Attackers
need to design the attack work flow and attack FF windows
according to the target application.

In order to avoid any suspect, the attack windows are
supposed to be “user-transparent” so that a user can hardly
tell the di↵erence when the attack FF windows are popped
up on top of the target. User-transparent experience should
last during the whole process from the popping up of the
attack FF windows to their exiting. Based on the user-
transparent principle, there are several crucial problems
need to be settled during o✏ine design: 1) When is the right
time to pop up the attack FF windows? 2) Which area
of the target application will be covered? 3) How should
the appearance of the attack FF windows look like? 4)
Which type of FF windows will be used according to the



Figure 2: GUI hijacking process.

priority in display layer? 5) Whether the attack FF windows
accept user-generated events? 6) How to exit the attack FF
windows in a reasonable and unsuspicious way?

Later, when the attack application is distributed to
devices, it can just act as designed, i.e., detecting the
appearance of target application (e.g., one of the activ-
ities/windows in the target application), popping up the
attack FF windows, processing the click events, and exiting
after finishing tasks.

3.2.2 Hijacking the system keyguard
Keyguard is a protection mechanism provided by Android,

which is invoked when a device is idle. It protects the touch
screen from being accidentally touched, e.g., an application
is accidentally launched or a phone call is unexpectedly
made. When a keyguard is set with a secret unlock pattern
which is usually a consecutive drawing among 9 dots, it can
further protect the private data on the device from being
accessed by people other than its owner. In this section,
we show how to take advantage of FF windows to hijack
the system keyguard with patterns, and intercept the secret
pattern when it is input to the device by the device user3.

Choose the type of the attack FF windows. First of
all is to determine the type of FF windows which are going
to be used in keyguard hijacking. We need an FF window
that can display itself above the system keyguard interface.
According to Figure 1, there are two FF window types
that can float above a keyguard, i.e., TYPE_SYSTEM_OVERLAY
and TYPE_SYSTEM_ERROR. Another requirement for this FF
window is that it should be touchable since it is going to
process the secret pattern that a user inputs. An FF window
of TYPE_SYSTEM_OVERLAY does not qualify in this scenario
as it is not touchable. Therefore, we use an FF window of
TYPE_SYSTEM_ERROR to hijack the system keyguard.

Determine the launch timing of the attack FF

windows. The attack FF window needs a signal to
trigger its launch. Normally, the keyguard should be the
first interface after an Android device is waked by a user,
which signals a system event named ACTION_SCREEN_ON.
Hence, if the attack application listens to this event, it
can determine the waking of the device. In case the
keyguard is not active by the time the device is waked,
the attack application needs to further check whether the
current screen content is the keyguard by calling Keyguard-
Manager.inKeyguardRestrictedInputMode(). If it is, the
attack FF window should be launched.

Design the attack FF windows. This attack FF
window is designed to be transparent. After the device
user wakes his/her phone and the keyguard is shown, the
transparent attack window is popped up appearing itself on
top of the keyguard because of its high priority. When a

3The system keyguard using PIN can also be hijacked in a
similar way. In this paper, we hijack the keyguard using
pattern for demonstration.

(a) Hijack the system keyguard. (b) Hijack Alipay.

Figure 3: Hijack the pattern unlock interface.

user intends to draw his/her secret pattern to unlock the
keyguard, the attack FF window intercepts all the touch
events and obtains the pattern. The system keyguard knows
nothing about what happens and of course the system is still
locked.

Exit the attack FF windows in an unsuspicious

way. After obtaining the target pattern, it needs an
unsuspicious way to exit and give the focus back to the
keyguard. We design its exiting as follows. As shown in
Figure 3a, after the user finishes his/her drawing (a pattern
like “Z”), the attack FF window shows the trail that the
user just drew but without the last dot. It looks exactly
like the legitimate feedback when the last touch is failed.
At the same time, an error is shown by another FF window,
which says incorrect and recommends one more try. The FF
window showing the error message is in the size just enough
to show a line of error message. Sometimes this FF window
may overlap with part of the original message from the
keyguard, which may cause suspect. To avoid such suspect,
the attack FF window showing error message dynamically
gets the current wallpaper using WallpaperManager and fills
up its background with the same part of the wallpaper by
calculating according its display coordinates, which is like a
patch showing an error message with the original wallpaper
background. When the user is taking another try, all the
attack FF windows exit and the keyguard gets the input
focus back.

Apply the attack to other applications. This
hijacking can also be applied to third-party applications.
There are many applications using patterns to unlock



themselves, e.g., Alipay4 [20] uses unlock pattern in its
Android application. We carry out experiments on Alipay as
we do to the system keyguard, and manage to get its unlock
pattern as shown in Figure 3b. In this case, the type of
attack FF windows does not have to be TYPE_SYSTEM_ERROR.
An FF window of TYPE_TOAST is enough for hijacking Alipay,
since an FF window of TYPE_TOAST can overlap the target
activity which is of TYPE_APPLICATION.

3.2.3 Hijacking the security alert
The security mechanism on Android is based on permis-

sions. Android lists all the permission that an application
requests during the application’s installation. If a user clicks
the install button, it means that all the required permissions
would be granted. Otherwise, the installation fails. It works
in an all-or-nothing mode5, which perplexes the users who
intend to use an application but do not willing to grant all
the permissions it requests. To address this issue, mobile
phone vendors customize their systems based on Android
to support dynamic permission grant, such as Huawei’s
EMUI [21]. In fact, this customization is a compulsive
requirement by China Communications Standards Associ-
ation. It requires an explicit user confirmation at the first
time of an application accessing a resource protected by a
permission [22].

EMUI proposes a runtime permission control to solve
the dilemma of all-or-nothing. On a Huawei device, an
application is installed in the traditional all-or-noting mode.
The di↵erence happens when an application with granted
permission accesses the protected resource on Huawei device,
e.g., an application with READ_CONTACTS permission accesses
the contacts. At the time of access, EMUI prompts a
security alert dialog showing the information about the
application and the sensitive resource it is trying to access
as shown in Figure 4a. EMUI enables its users dynamically
decide whether to allow the access or not. If a user allows the
access, the application can truly get access to the protected
resource. Otherwise, the access fails. For attackers, this
is a barrier which prevents them from accessing desired
resources. However, the security alert has no guarantee
of its appearance in front of users. In the following,
we demonstrate that a malicious application is able to
obtain user consent with a higher possibility in EMUI when
accessing the desired resources by hijacking the security alert
using FF windows.

Choose the type of the attack FF windows. To
hijack a security alert, the first step is to determine the type
of the attack FF window, so that it can overlap the target
security alert. Since the EMUI is a close-sourced product,
we have to try the types in Table 1 to see which one can
meet our requirement. We try TYPE_TOAST first to check out
whether it can appear on top of the security alert, because
TYPE_TOAST is the only one in Table 1 that does not require
any permission. Unfortunately, TYPE_TOAST cannot cover
the security alert. Hence, we use TYPE_SYSTEM_ERROR which
enjoys the top priority among all the other types requiring
SYSTEM_ALERT_WINDOW permission.

4Alipay, which is operated by Alibaba Group, is the largest
financial application in China with 2.78 billion transactions
in total of RMB 900 billion by early 2014[19].
5Di↵erently, the latest Android 6 allows a user to revoke the
grant even after the installation.

Design the attack FF windows. Normally, a user
prefers to allow an application to access a less sensitive
resource, e.g., device ID, instead of a more sensitive resource,
e.g., contacts. Therefore, we design such hijack which covers
the true resource name with a less sensitive resource to
trick users into allowing the access. At the same time,
we let the fake alert work as the original security alert.
It means that the dialog disappears if and only if a user
clicks one of the allow/restrict buttons. Any touch out of
this area does nothing to the display. Since di↵erent areas
behave di↵erently, it requires the combination of di↵erent
FF windows in one screen. As illustrated in Figure 4b,
the screen can be divided into 6 areas when the security
alert shows. Area “resource” displays the resource that an
application is trying to access. Area “button” is to respond
the user click. And the other 4 areas “a”, “b”, “c”, and “d”
are the remaining areas which do not respond to any touch
event. We adopt 6 FF windows with di↵erent behaviour
features to cover those areas in Figure 4b. The FF window
above “resource” area deceives the user by displaying a less
sensitive resource name instead of the original one, e.g.,
informing the user that the device ID is being accessed
instead of the contacts. This FF window is designed in the
exact same style of the original “resource” area. We keep the
other 5 FF windows transparent.

We also set the event processing capability for each FF
window according to their desired behaviour features. The
FF window above “button” area should pass down the user
clicks inside its window range to the original buttons to make
the user consent e↵ective. According to Table 3, “button”
FF window is set to FLAG_NOT_TOUCHABLE to pass down the
click events. For the other 5 FF windows, since there is
no need to pass down any user click to the covered areas,
they are set to FLAG_NOT_FOCUSABLE. In this setting, only
the covered window within “button” area can receive click
events.

Determine the launch timing of the attack FF

windows. These FF windows need to be launched at a
proper time, that is when the security alert is shown on
screen. To determine the proper timing, the malicious
application, which is going to access a sensitive resource,
pops up a invisible FF window with FLAG_NOT_TOUCHABLE
before performing any access operation. This FF window
can get the input focus when it is on the top layer of
the screen. When the application is accessing the sensitive
resource, the security alert would appear to warn the user
of the access details. Once the security alert is shown, the
invisible FF window popped up before would loss focus,
which would trigger a callback of the FF window, i.e.,
onWindowFocusChanged. Once the onWindowFocusChanged
is triggered, the attack FF windows can be launched.

Exit the attack FF windows in a unsuspicious

way. The original security alert would disappear after
the user clicks one of the decision button in the “button”
area, because the FF window in this area passes down the
user click to the original security alert. At the same time,
all the 6 attack FF windows should disappear with the
original alert to avoid any suspect. The challenge is that
it requires all the 6 FF windows to be aware of the click
event happened in the “button” area. To solve this problem,
we introduce the assistant flag FLAG_WATCH_OUTSIDE_TOUCH
which has been explained in Section 2. An FF win-
dow with FLAG_WATCH_OUTSIDE_TOUCH can listen to an AC-



(a) The security alert dialog in
Huawei EMUI.

(b) The design of the attack FF windows. (c) The e↵ect of hijacking secu-
rity alert.

Figure 4: Hijack the security alert dialog.

TION_OUTSIDE event which is created by Android system
when an ACTION_DOWN event happens outside the window
range. For an FF window with FLAG_NOT_TOUCHABLE (e.g.,
the “button” FF window), all the screen-wide area is con-
sidered as “outside”. It means that if there is no touchable
window above it along the Z-axis, any click event happens in
any area of the screen can trigger an ACTION_OUTSIDE event
to the “button” FF window. To guarantee the “button” FF
window receives an ACTION_OUTSIDE event if and only if the
click is within its window area, we pop up it first to place it
below the other 5 attack FF windows along the Z-axis. The
other 5 FF windows are popped up afterwards, whose order
does not matter. In this situation, any click happens outside
the “button” area would not introduce any ACTION_OUTSIDE
event to the “button” FF window. At the time when the
“button” FF window receives the ACTION_OUTSIDE event,
it sends a message to the other 5 attack FF windows and
destroys itself. Upon receiving the message, the other 5 FF
windows destroy themselves. Till now, the exit is completed
in a resonable and unsuspicious way.

The attack e↵ect is shown in Figure 4c. After a user clicks
one of the decision buttons, the attack FF windows would
all disappear. A user would believe that (s)he allows an
application to access the device ID, however, the fact is that
the application acquires a di↵erent dynamic-granted permis-
sion and accesses more sensitive resources (e.g., contacts)
without his/her knowing. The dynamic grant mechanism is
bypassed. Similarly, this attack can be launched against
other customized systems (e.g., MIUI [23] developed by
Xiaomi Inc.) and third-party security applications (e.g.,
LBE [24]).

3.3 FF Windows as a Side Channel
Users usually has a regular input pattern when inputting

on phone, e.g., the intervals between two characters during
input [25, 26]. We demonstrate in this section that FF
windows could serve as a side channel to get the intervals and
further infer user input, which can increase the possibility
of the password-guessing attack6.

6The regular input pattern can be reflect only when the
keyboard layout is fixed, a self-defined keyboard which

We target at the payment password used in financial
applications. It is adopted by financial applications, e.g.,
Alipay and WeChat Payment7, as an additional password
when a user is confirming a payment or a transfer request.
Di↵erent from the account password, a payment password
usually consists of 6 digits. A typical keyboard fromWeChat
Payment layout is as shown in Figure 5a.

Design the attack FF window. We are going to use
an FF window to obtain the intervals between two clicks,
based on which the input digits can be inferred with certain
possibility. Normally, when a click event is generated by a
user, it is passed to the touched window, i.e., keyboard in
this case, which is going to process the event according to
its click position. Simultaneously, this event is passed to
all FF windows with FLAG_WATCH_OUTSIDE_TOUCH on top of
the touched window via ACTION_OUTSIDE which excludes the
information about click position. Therefore, an FF window
with FLAG_WATCH_OUTSIDE_TOUCH on top of the touched
window is able to access the precise time when a user click
happens, and hence the interval between two user clicks.
Besides obtaining the input intervals, this FF window should
not interfere any touch event. According to Table 3, we set it
to FLAG_NOT_TOUCHABLE which does not respond to any click
event no matter inside or outside the FF window so that it
would not a↵ect the input to the keyboard. In order to be
stealthy as much as possible, the FF window is transparent
and in pixel size.

The attack procedure. The procedure contains two
phases, i.e., model training and model applying.

In the model training phase, we build the user input
pattern model. In this phase, it shows a 2-digit number each
time and requires a user to input the correct number. The
input activity is similar to the activity requiring payment
password in WeChat Payment so that the user input pattern
we build could apply to the scenario of payment password
input. The user click positions and the intervals between

randomly shifts the position of each key every time does
not a↵ect by this attack.
7WeChat Payment is one of the most popular payment
option in China. It is a payment feature integrated in
WeChat [27] with around 400 million users by middle
2015 [28].



(a) The interface requiring pay-
ment password in WeChat Pay-
ment.

(b) The interface of the model
training game.

Figure 5: Inferring payment password using FF windows as
a side channel.

every two digits are recorded, which are used to construct
the Hidden Markov Model (HMM) model. HMM model
is suitable for our input inference. The HMM is di↵erent
from a Markov Model (MM) which is a way of describing
a finite-state stochastic process with the property that the
probability of transitioning from the current state to another
state depends only on the current state [29]. In HMM,
the current state of a finite-state process cannot be directly
observed. Only some outputs from the state are observed,
and the probability distribution of possible outputs given
the state is dependent only on the state [30]. In our
scenario, every two consecutive digits are considered as a
non-observable state and the intervals as the outputs. The
possibility of next digit pair in the user input depends only
on the current digit pair, which is suitable to use HMM.

Next in the model applying phase, we simulate the
scenario of inputting payment password. A 6-digit number is
shown on screen. A user is asked to remember and input this
number correctly. At the same time, there is a transparent
FF window popped up to obtain the intervals between two
clicks. We adopt Top-N HMM [30], which outputs N most-
likely 6-digit sequences.

For demonstration purpose, we describe the procedure
in a technical manner. In real-world scenario, the process
should be presented in an interesting way, e.g., a game.
We have developed an application “whack a mole” with
two modes corresponding to the above two phases in attack
procedure. In the model training phase, there would be no
specific 2-digit number leading a user to input. The intervals
are collected during whacking the moles. For example in
Figure 5b, we can get the intervals between 3 and 9 by
showing two moles at the same positions where 3 and 9
are located in the keyboard. A simplified version of this
application is published to Google Play [9].

Experiment. We conduct experiment to evaluate this
attack. In the model training phase, we prepare 100 2-digit
numbers and each number repeats 50 times. Volunteers
are recruited to go through the designed experiment. A
volunteer is asked to go through all the numbers and

XXXXXXXXXN
Edit distance

0 1 2 3 4

10 0 1 14 31 48
50 0 8 24 46 84
100 2 12 31 54 77
200 6 19 39 63 62

Table 4: The distribution of N most-likely sequences in
terms of edit distance between inferred digit sequences and
the original ones.

XXXXXXXXXN
Edit distance

0 1 2 3 4

10 2 27 36 48 70
50 26 32 45 55 31
100 34 43 39 63 10
200 51 40 37 60 1

Table 5: The distribution of N most-likely sequences in
terms of edit distance between inferred digit sequences and
the original ones under the condition that the first digit is
obtained accurately.

complete the input. The input numbers and the intervals
between two digits are recorded.

In the model applying phase which simulates the attack
scenario of inferring the payment password, the volunteer
is asked to input a set of 6-digit numbers (which consists of
189 numbers in this experiment). In this phase, the invisible
FF window which can obtain the click intervals is popped
up. The intervals are used as input to the model we trained
in previous training phase. The edit distance is used to
measure the distance between the inferred digit sequences
and the original ones. The results are shown in Table 4. It
is shown that using the 100 most-likely sequences, there are
12 numbers among the 189 numbers with 1 in edit distance
which means the inferring sequences miss 1 digit compared
to the original sequence.

Since the probability distribution of the next input digit
depends only on current state, we further investigate the
results when the first input digit is accurately known. To
obtain the first digit a user inputs, we use an FF window
with FLAG_NOT_FOCUSABLE to cover the whole keyboard at
the beginning of user input. This FF window can get
the click event including the click position, thus we can
know the exact digit the user inputs. After the first
digit is obtained, this FF window is replaced with the
original pixel-sized FF window with FLAG_NOT_TOUCHABLE
and FLAG_WATCH_OUTSIDE_TOUCH. The following process is
the same as the previous. From the perspective of a user, it
seems like that the first click fails. It can be seen in Table 5
that the accuracy enhances a lot when the first digit is known
in advance. Compared to the normal attack mode, in the
100 most-likely sequences, there are 43 sequences among the
189 numbers missing just 1 digit. We even get 2 of the 189
numbers with 0 edit distance in 10 most-likely sequences.

As shown in experiment results, it is e↵ective to increase
the possibility of the password-guessing attack by obtaining
the intervals using FF windows. The results are even better
when the first digit is obtained using an FF window in
advance.



4. DEFENCE
According to the attack analysis in the previous section,

FF windows can be abused to launch attacks such as DoS
attack against Android system, GUI hijacking, and input
inference attack. In order to protect Android system and its
users from such attacks, we discuss the cause of the attacks
and propose defence mechanism in this section. Specifically,
we propose and implement a priority framework for FF
windows and a solution to GUI attack via activities. Finally,
we provide suggestions on how to enhance the management
for FF windows.

4.1 The Priority Framework for FF Windows
The GUI hijacking attack and the input inference attack

via FF windows are both due to the fact that a user is
unaware of the untrusted FF windows on top of the user
interface which (s)he intends to interact with.

There are several challenges to prevent such attacks.
1) Under the current management for FF windows, it is
useless to set the target FF window to type with higher
priority. On Android, the priority of an FF window in layer
order is strictly according to its type as shown in Figure 1.
For FF windows with the same type, the FF window
popped up later is on top of the former one. Normally,
the attack FF windows are launched after the target FF
window appears. Therefore, even if the target FF window
is set to TYPE_SYSTEM_ERROR, which is the most prior type a
third-party application can use, the attack FF window can
still appear on top of it as long as the attack FF window
is also set to TYPE_SYSTEM_ERROR. 2) Another challenge is
that FF windows do not respond to the Back button or
Home button, it is di�cult for a user to exit a malicious FF
window even when (s)he discovers it. 3) In addition, it is
not ideal to prohibit third-party applications from using FF
window types with high priority. High priority types, such
as TYPE_SYSTEM_ERROR, have already been widely used in the
third-party applications, e.g., applications with customized
user interactions when screen is locked. It would cause
incompatibility between Android system and a lot of such
applications to prohibit the use of high priority types.

To solve the challenges, we present a priority framework
which requires no change in the current type setting and
involves no operation from users. This priority framework
is able to protect a sensitive activity/FF window, e.g., an
activity accepting passwords or an FF window showing
security alerts, from being overlapped by any FF window, if
it is designed not to. If a developer designs an activity/FF
window to be sensitive and be free from being overlapped, we
call this activity/FF window a non-overlappable activity/FF
window. To mitigate the attacks via FF windows, a non-
overlappable activity should not be overlapped by any other
FF windows, no matter the FF window is from the same
or di↵erent application, and no matter the FF window is
non-overlappable or not. Similarly, a non-overlappable FF
window should not be overlapped by any FF window, if there
is no non-overlappable FF window occupying the screen at
the moment. The details of our solution are explained below.

Technically, we achieve the above goals by introducing an
attribute overlappable to WindowManager.LayoutParams.
It is used to specify whether the activity/FF window can be
overlapped or not, which by default is true, i.e., behaving
like a normal activity/FF window. A developer can set
this attribute in his/her activity/FF window to explicitly

declare this activity/FF window should not be overlapped by
any FF window from any other applications. This attribute
regulates a window8 in the following way:

1. For overlappable windows, they behaves according to
the original rules from Android, i.e., following the
priority order based on the types and showing the
window popped up later on top of the former one with
the same type.

2. A non-overlappable third-party window is always on
top of an overlappable third-party window.

3. For non-overlappable third-party windows, an activity
is on top of an FF window to protect an activity from
being overlapped by a malicious FF window which is
also set to non-overlappable, i.e., false value in the
attribute overlappable.

4. For non-overlappable third-party FF windows, the one
popped up later is below the former one.

5. For the sub-windows (e.g., Dialogs and PopupWin-
dows) of a non-overlappable third-party window, their
relative order along the Z-axis follows the original rules
in Android.

6. A non-overlappable system window is always on top of
a third-party window.

7. For non-overlappable system windows, they behaves
according to the original rules from Android, i.e.,
following the priority order based on the types and
showing the window popped up later on top of the
former one with the same type.

We implement the prototype on Android 5.0 by adjust-
ing the layer of a window in WindowManager according
to its overlappable value. WindowManager is a system
service responsible for managing windows appearance and
position including the Z-ordered list of windows. If a
third-party window is set to “false” in overlappable, i.e.,
should not be overlapped, we place it on top of the
window of TYPE_SYSTEM_ERROR along the Z-axis. Because
TYPE_SYSTEM_ERROR is the most prior type that a third-
party window can use. If a system window is set to non-
overlappable, we adjust it according to its type. If it is more
prior than TYPE_SYSTEM_ERROR, we left it to original rules.
Otherwise, we adjust its position along Z-axis to make sure
it can appear on top of all third-party windows including
the non-overlappable ones. After that, Android can protect
a sensitive window explicitly specified as non-overlappable
by a developer from being overlapped by any FF windows.
This solution introduces insignificant changes (105 lines of
core code) to Android system.

4.2 Solution to GUI Attack via Activities
In the priority framework, we mitigate the attacks from

FF windows by setting the sensitive activities or FF windows
to a non-overlappable status. However, it is mentioned in
previous work [3] that GUI attacks via activities, which
we do not focus on in this paper, can also cause serious

8Since an activity is equivalent to the FF window with
TYPE_APPLICATION in layer priority, we use“window”to refer
to an FF window or an activity.



security issues. GUI attack via activities is to deceive user by
covering the current activity with a malicious activity from
another application. When Android switches the activities
between applications, it is di↵erent from the way to start
an FF window. Normally, Android switches o↵ the current
activity before starting the next activity. Since the current
activity is no longer in front of the screen by the time of
switching, it cannot be protected by attribute overlappable
when replaced by another activity.

We propose a complementary solution to our priority
framework to solve the attacks from activities. We adopt
the way of showing information on the navigation bar [3].
Because the navigation bar is designed to be easily ac-
cessed during the use of Android. Even in the fullscreen
mode, it can be accessed by either clicking or swiping on
screen. However, there is a challenge to guarantee the
appearance of the navigation bar. An FF window of type
TYPE_SYSTEM_ERROR can create an “inescapable” fullscreen
user interface [3], which may result in the inaccessibility of
the navigation bar. To solve the challenge, we adjust the
display priority order of the navigation bar. Di↵erent from
previous solution [3] which prohibit third-party applications
from using FF windows of TYPE_SYSTEM_ERROR, we adjust
the window of NAVIGATION_BAR or NAVIGATION_BAR_PANEL
on top of the window of TYPE_SYSTEM_ERROR along the Z-
axis. This adjustment impacts little on the normal use of FF
windows. Because a navigation-bar-related window is only
for the system use showing at the bottom of the screen, and a
benign FF windows with TYPE_SYSTEM_ERROR should not try
to block the user from accessing the navigation bar. In such
case, TYPE_SYSTEM_ERROR cannot be used to cover navigation
bar any more, so that we can guarantee the appearance of
the assistant information.

We show the icon and the package name the application
that a user is interacting with on the navigation bar. The
priority framework in Section 4.1 can prevent the sensitive
activity/FF window declared by developers from being
overlapped by FF windows. So if the sensitive activity/FF
window is not overlapped by another activity, it must be
on the top layer. Hence, the information about the top
application, which the top interactive activity belongs to, is
su�cient to give users hint about whether the activity/FF
window is covered by any malicious activity. The icon in
navigation bar is designed to be clicked to show information
about the top application as shown in Figure 6. The
window showing the application information is set to the
TYPE_HIDDEN_NAV_CONSUMER which is only for the use of
system application and enjoys the top priority in display
order to guarantee its appearance to users. The user can
check whether the activity currently on the top layer is
the one that (s)he is intended to interact with by the icon,
package name, or detail information after clicking the icon.
Di↵erent from an FF window which does not respond to
Back button or Home button, an activity is easy to be ended
by clicking the Back button or Home button once the user
notices anything unusual, e.g., the top application is not the
one (s)he intends to interact with.

4.3 Discussion
Di↵erent from activities, it is di�cult for a user to notice

the existence of malicious FF windows since the FF windows
can be highly customized with various attributes. Even if
the user has noticed the existence of an FF window, (s)he

Figure 6: The demo of solution to GUI attack via activities.

cannot distinguish which application the FF window is from.
Moreover, unlike the activities which can be closed by click
Back button or Home button on the navigation bar, FF
windows respond to neither of them, which may stuck the
user in an interface responding to nothing.

To eliminate such di�culty, we suggest Android should
restrict the power of FF windows and provide specific
management of FF windows. As analysed, the only way
to exit an FF window is to close the application it belongs
to. Android could be enhanced to add management for FF
windows, e.g., users can long press the Home button to check
the active FF windows and the applications they belong to
and close certain FF window by closing its corresponding
application. To protect the usability of the Home button, it
is suggested that Android should prevent FF windows from
disabling the Home button, as it does to activities since
version 4.0.

In addition, in the DoS attack in Section 3.1, the Android
system dies when a large number of FF windows, Dialogs,
or PopupWindows exhaust the system resources. Like the
prevention of other DoS attacks, it is an e↵ective way to
enforce restriction on the use of system resources. Android
has limited the number of Toasts since Android 4.0, that
any request to pop up more than 50 Toasts will be ignored.
Similarly, to defend against such DoS attack, we suggest
that Android restricts the number of windows, including FF
windows, Dialogs, and PopupWindows that an application
can invoke.

5. RELATED WORK
The DoS attack on Android is to occupy or flood the

resources in Android system, so that Android can no longer
provide normal services. Huang et al. [15] launch the
DoS attack by occupying the critical lock in Android.
They observe that Android system services often use the
lock mechanism to protect critical sections or synchronized
methods, many of which share the same lock. If an
application takes a lock for a long time, other services share
the same lock would freeze. Further, the watchdog thread
would detect the unavailability of the lock it monitors and
force Android to reboot. There are also related works



showing that DoS on Android can be caused by Toast [31]
and Flash SMS [32]. Lineberry et al. [31] reveal that an
application can carry out DoS attack by popping up a large
number of Toasts which exhaust the limited indices that
the system can create. It leads to the restart of Android
system. DoS attack based on Toasts can only work on
Android with versions lower than 4.0, since this problem has
been fixed by limiting the number of Toasts an application
can pop up. DoS based on Flash SMS [32] relies on the
limited number of Flash SMS notifications that Android can
cope with. A number of Flash SMS notifications result in
the restart of the SMS application, and even the restart of
Android system depending on the attack situations. This
vulnerability is fixed since Android 4.4.2. Di↵erent from
the above three DoS attacks, DoS based on FF windows is
caused by a di↵erent resource exhaustion. DoS attack based
on FF windows works on nearly all Android versions from
2.3 to latest 6.0.

In the area of GUI attacks, Bianchi et al. [3] classify
the GUI confusion attacks to three classes according to the
Android UI objects the attacks utilize. They focus on the
attacks based on Toasts, Activities, and fullscreen Windows.
The most harmful inescapable fullscreen window is a type
of FF window with specific attributes. Di↵erent from their
work, our paper explores the attributes of FF windows,
according to which the behaviour feature of an FF window
varies. We further identify the attacks that based on the FF
windows with di↵erent behaviour features, including DoS
attacks, GUI hijacking, and user input inference.

Input inference based on information from side channels
on mobile devices is widely studied. Previous works utilize
the sensors on mobile devices, e.g., accelerometer, gyroscope,
camera, and microphone, to get side-channel information
about the input content. TouchLogger [33] demonstrates
the possibility of inferring user input via device orientation
data. Aviv et al. [34] use accelerometer data to infer the PIN
and pattern of system keyguard with an accuracy of 43%
and 73% within 5 attempts, respectively. Taplogger [35]
stealthily logs the password of screen lock and the num-
bers entered during a phone call using accelerometer and
gyroscope data generated by user input. PIN Skimmer [36]
correlates sensor data to the position of the digit tapped
by the user. It uses microphone to detect touch events,
and the camera to estimate the smartphone’s orientation.
Except for accessing sensor data, e.g., accelerometer and
gyroscope, it requires the calling application to have certain
permission when accessing other resources, e.g., camera and
microphones. In this paper, we target at the payment
password in financial applications and use an invisible FF
window to get the pattern when a user inputs, which requires
no permission. We use the FF window to get the interval
between two taps, based on which we build an HMM model,
and further infer the input digits using the model we build.
The experiment results show that our inference can be
used to stealthily increase the possibility of the password-
guessing.

The defence against GUI confusion is studied in previous
work [3], which proposes an on-device defence by showing
the authenticity about the application taking the top layer
of screen on navigation bar. It uses the Extended-Validation
certificate in HTTPS to identify the authenticity of an
application. Like a browser shows a green lock image
on URL bar to authentic HTTPS URLs, it shows green

lock on the navigation bar to the authentic applications
when there is no visible UI element from other applica-
tions. It requires developers to apply the certificate from
a certificate authority for a fee, which may not applicable
for small enterprises or individual developers. Moreover,
as a defence mechanism, it fails to defeat the possible
disturbance from malicious FF windows, e.g., a one-pixel-
sized FF windows with no event processing attribute could
disable the notification of authenticity by keeping the lock
yellow while keeping the top application usable. Our
solution propose a priority framework for FF windows,
which can guarantee the sensitive activity/FF window would
not be overlapped by any FF window. This is done by
adding an extra attribute to WindowManager.LayoutParams,
which can be used by developers to explicitly declare the
sensitive activity/FF window. Except for the mitigation to
attacks via FF windows, we also provide a complementary
solution to solve the attacks based on activities. We
emphasize that it is important for users to know the
information about the application on the top layer of screen,
instead of just notifying user the results. By adjusting
the window of NAVIGATION_BAR on top of the window
of TYPE_SYSTEM_ERROR along the Z-axis, we can securely
show information about the current top application to
users. Unlike previous solution [3], our solution requires
no involvement of third-party authorities. The priority
framework combined with the solution for attacks based on
activities can prevent a sensitive activity/FF window from
being hijacked by FF windows and activities.

6. CONCLUSION
In this paper, we study the important behaviour features

of FF windows, based on which three types of attacks can
be performed by FF windows with delicate attributes and
subtle design, i.e., DoS attack against Android systems, GUI
hijacking by targeting overlap, and input inference using FF
windows as a side channel. We analyse these attacks and
conduct experiments to show the threat from FF windows.
To address the threat from FF windows, we propose a
priority framework for FF windows to prevent any sensitive
activity/FF window from being overlapped by malicious FF
windows. In addition, we propose a complementary solution
for GUI hijacking attacks based on activities. Finally, some
suggestions are provided to Android to solve the threat
caused by FF windows.
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